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Towards Efficient Generalization of Reinforcement Learning

Agents by Leveraging Human and Learned Priors
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Figure 1: Humans inherently possess rich spatial-temporal reasoning capabilities and vast prior experiences that allow us to
reason about and adapt to new environments and tasks. Reinforcement learning agents can benefit from these rich human
priors, inductive biases, and coupled with their own prior experiences generalize to new tasks in a data-efficient manner.

1 Motivation and Research Overview

Reinforcement Learning (RL) agents have demonstrated impressive performance across many applications including
video games, robotics, healthcare, and recommendation systems. Yet, they remain highly data-inefficient, often
requiring millions of environment interactions or hundreds of expert demonstrations to solve simple tasks. For instance,
a state-of-the-art RL agent requires playing over 200,000 games – the equivalent of a couple months of human game
play – to solve the simple Atari Pong game, while humans can learn to play it in just several minutes with little to no
prior experience. Moveover, RL agents often overfit to the narrow range of tasks that they were trained on, struggling
to generalize to new tasks; an agent trained to play Pong will fail catastrophically on another Atari game. In contrast,
humans leverage their vast prior knowledge and experiences to quickly adapt to entirely new environments and tasks.
My research aims to bridge this gap between how humans and RL agents learn by developing algorithms that
leverage human priors and learned priors to bootstrap learning for decision-making agents resulting
in more data-efficient learning and generalist behavior .

In my past work, I have focused on two types of human priors: task-specific knowledge and temporal structure (see
Figure 1). Task-specific information includes the task itself (e.g. what is the objective?) and state representations
(e.g. which parts of an image are relevant for decision-making?). This task-specific knowledge can be communicated
by a human in the loop to an RL agent both explicitly through cues like natural language or expert demonstrations,
and implicitly, through gesture or gaze. In one project, I used human gaze to convey important parts of a scene to an
RL agent. Our gaze locations and patterns carry task-relevant information that may be hard to articulate explicitly,
offering a low-effort mechanism for guiding RL agents. Based on this insight, I developed a framework using human
gaze to enhance visual representations leading to more sample-efficient and robust robot policies [Liang et al., 2024c].

In addition to visual perception, humans are adept at temporal reasoning, synthesizing information across time
to predict, and plan into the future. We reason about uncertainty and incorporate it to make better, more informed
decisions. In a separate line of work, I investigated a sequential-decision making setting where latent factors that affect
the generative process change over time. Many real-world applications exhibit this property such as recommendation
systems in which the user state (e.g. mood) is unobserved and non-stationary. A recommender agent must maintain
a belief over the user’s state and model how it changes over time, creating a difficult learning problem. I proposed a
meta-RL algorithm which exploits this temporal structure to learn a more accurate belief model and efficiently solve
the target task [Liang et al., 2024a].

While human priors provide valuable information for RL agents to learn more effectively, they may not be sufficient
to achieve agents capable of diverse behaviors. When attempting a completely new task, we typically leverage prior
knowledge and experiences to bootstrap our learning. For example, when learning to play tennis, we rely on our
experience with other racket sports like badminton or racquetball. In my previous work, I proposed a framework for
scalable and modular skill learning [Liang et al., 2022]. First, I pretrained a large Transformer backbone model to
capture diverse behaviors. For each new downstream task, the base model is frozen and a small adapter network
(only 2% of the base model parameters) efficiently adapts to the new task by leveraging the prior knowledge encoded
in the base model and a few expert demonstrations. Once trained, these task-specific adapters are modular subunits
that can plug-and-play into the base model to produce different desired behaviors. Learned adapters for primitive
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skills can further be combined with each other to perform compositional tasks. While we can continually accumulate
adapters, each new skill requires new expert demonstrations with labelled actions. What if the pretraining dataset
is unlabelled, and we only have a few or just one example to learn a new downstream task? In my current research,
I am developing a method for learning RL agent policies from Internet videos, which do not have action labels, and
employ in-context learning to generalize to a new domain with as few as a single demonstration.

Proposed Two-Year Research Thrusts:

1. Investigate other natural, readily available forms of human priors to accelerate RL training including
intuitive physics and causal reasoning;

2. Develop a set of standard tasks and algorithms in simulation and real-world applications to systematically
train, evaluate, and understand an RL agent’s capacity to efficiently generalize to unseen tasks.

2 Prior Work: Human Gaze and Temporal Reasoning
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Figure 2: ViSaRL trains a saliency prediction model from a few
human-annotated saliency maps. A visual encoder is pretrained
with paired image and pseudo-labelled saliency data to generate
image representations for the RL policy.

Human Gaze Informed Visual Representations
for Robot Learning. For robots, images are clut-
tered with distractions, such as background objects and
varying lighting conditions, making it difficult for them
to extract useful features for decision-making. Teach-
ing robots to perform complex control tasks from high-
dimensional image inputs is a nontrivial problem. State-
of-the-art methods require hundreds of manually col-
lected expert demonstrations or hours to days of training
in simulation to learn a simple pick-and-place skill. RL
agents must effectively compress pixel data into a lower-
dimensional representation.

Studies in neuroscience found that humans utilize se-
lective attention to focus on task-relevant information for
efficiently processing complex visual scenes [Darby et al.,
2021]. When performing everyday pick-and-place tasks,
we employ selective attention to identify the target ob-
jects, focus on the grasp points, and execute precise hand-eye coordination. Drawing inspiration from our visual
mechanisms, I developed a method to learn visual representations that capture useful features of the sensory input to
simplify the decision-making process. While prior works proposed to learn such representations through various self-
supervised objectives, such as contrastive learning [Laskin et al., 2020] and data augmentation [Kostrikov et al., 2021],
I focus on saliency, a continuous heatmap that represents the importance of different parts of an image tracked by our
gaze patterns. Saliency introduces additional human domain knowledge to inform the representation of task-relevant
features in the visual input and filters out uninformative perceptual noise.

I introduced Visual Saliency Reinforcement Learning (ViSaRL) [Liang et al., 2024c], a general approach for
incorporating human saliency maps as an inductive bias to improve visual representations. The key
idea of ViSaRL is to train a visual encoder using both RGB and saliency inputs and an RL policy that operates
over the image representations from the encoder. I trained a multimodal autoencoder using a self-supervised masked
reconstruction objective and demonstrated that the learned representations attend to the most salient parts of the
input image. Training the visual encoder requires a large offline dataset of paired RGB and corresponding saliency
maps, which is expensive to manually annotate. To circumvent this overhead, I trained a state-of-the-art saliency
predictor using a few human-annotated examples to pseudo-label all the RGB observations in the offline dataset with
saliency maps. ViSaRL achieves an 18% improvement in task success rate compared to state-of-the-art baselines
in simulation experiments and nearly doubles the task success rate in real-robot experiments. I also demonstrated
that ViSaRL is robust to various visual perturbations, such as different backgrounds, distractor objects, and cluttered
tabletops. In this work, I built on the simple intuition that human gaze provides an informative prior over the relevant
parts of an image, and proposed a framework to integrate human gaze for training more robust robot policies.

Building on ViSaRL, I am currently developing a method to utilize human gaze for assisting robot teleoperation.
Human gaze not only captures pertinent visual information, but also conveys our intent and preferences which is
essential for developing robots that can work alongside humans in a collaborative and assistive manner.

Proposed future direction: Investigate types of implicit human feedback beyond gaze such as gestures and
incorporate these complementary modalities into ViSaRL to learn better representations for decision-making.
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With this framework, a human operator could simply look in the direction of the target object or location of interest
to implicitly signal to the robot what actions it should take. I aim to leverage information from human gaze to reduce
the cognitive and physical load for a human in the loop to guide a robot through complex tasks.

Latent MDPs POMDPsDLCMDPs

Figure 3: Dynamic Latent Context MDPs exploit
the inductive bias that latent context changes infre-
quently according to unobserved dynamics, allow-
ing RL agents to solve a simpler learning problem.

Leveraging temporal priors for sequential-decision mak-
ing under uncertainty. Humans also excel at temporal reason-
ing, synthesizing past experiences and information to make informed
predictions about future events. Our ability to integrate spatial and
temporal cues allows us to anticipate events and adapt quickly in dy-
namic environments. An assumption in traditional RL approaches
is that the underlying process, formally modelled as a Markov Deci-
sion Process (MDP), operates within a static environment with fixed
transition dynamics and rewards [Zintgraf et al., 2019].

In many real-world systems, however, the environment
dynamics are determined by latent factors that are non-
stationary. For example, in a recommendation system setting, a
user’s preference is a latent variable which gradually evolves over
time. A user may initially prefer a particular genre (e.g., action
movies), but their viewing habits could change over time, influenced

by external factors such as trending movies, mood, location, etc. A robust agent should adapt to these evolv-
ing tastes to provide suitable recommendations. During my internship project at Google Research, I for-
malized this setting in which latent contexts evolve at infrequent intervals as a Dynamic Latent Context MDP
(DLCMDP). DLCMDPs are between latent MDPs, in which the latent context is fixed throughout the entire episode,
and POMDPs, in which the latent context is always changing (see Figure 3). I proposed Dynamic Model for
Improved Temporal Meta Reinforcement Learning (DynaMITE-RL) [Liang et al., 2024b], an algorithm that exploits
this temporal inductive bias to efficiently learn an RL policy by obviating the need to solve a fully general POMDP.

Figure 4: Assistive itching
scratch task where the itch lo-
cation changes over time.

DynaMITE-RL consists of three crucial insights to enable tractable and efficient
policy learning in DLCMDP environments. First, we consider consistency of latent
information, by exploiting timesteps for which we have high confidence that the la-
tent variable is constant. To do so, DynaMITE-RL introduces a consistency loss to
regularize the posterior update model, providing better posterior estimates of the la-
tent variable. Second, DynaMITE-RL enforces the posterior update model to learn
the dynamics of the latent variable. This allows the trained policy to better infer,
and adapt to, temporal shifts in latent context in unknown environments. Finally,
DynaMITE-RL demonstrates that the variational objective in contemporary meta-RL
algorithms, which attempts to reconstruct the entire trajectory, can hurt performance
when the latent context is non-stationary. DynaMITE-RL modifies this objective to
reconstruct only the transitions within the same session. I demonstrated the impor-
tance of each modification in DynaMITE-RL across various domains, ranging from
discrete gridworld environments to continuous control and simulated robot assistive tasks, in both online and offline
RL settings. On a challenging itch-scratching task shown in Figure 4, DynaMITE-RL achieves over 100% improvement
in evaluation return over the next best baseline.

Proposed future direction: Apply DynaMITE-RL in real-world applications like recommendation systems and
real-robot navigation with long-horizon contexts, non-Markovian dynamics, and visual inputs.

3 Current Work: Meta-RL, Learning from Videos for Generalist Agents

Improving imitation learning by querying human experts on bottleneck states. In imitation learning
(IL), an agent learns to mimic the actions of an expert demonstrator. Imitation learning for many real-world applica-
tions suffer from a few well-known problems: 1) many expert demonstrations are required, 2) new demonstrations can
be prohibitively expensive to collect and do not guarantee improvement in the agent’s performance, and 3) covariate
shift can lead to degenerate behavior during test time. Expert demonstrations only cover a narrow distribution of
states that the agent will encounter when deployed into the real-world. Consequently, the agent will accumulate small
errors in its predictions which over many timesteps can lead to catastrophic failures.

I propose to address the shortcomings of traditional IL approaches in an active imitation learning framework
[Judah et al., 2014] whereby the agent can acquire more data by querying a human expert for action labels. The
objective is to minimize the burden on the human while maximizing the trained agent’s task performance on a single
deployment. Prior work asks human expert to annotate entire trajectories with action labels which is expensive and
not scalable. Rather than uniformly querying for additional data along a trajectory, we can again leverage the human
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prior that certain bottleneck states are more sensitive and mission-critical, requiring more granular
supervision. For example, to open a drawer with a handle, the robot’s approach to the handle is less important
compared to its ability to precisely manipulate the handle once it is near it. I propose to automatically identify critical
bottleneck states in the expert trajectory and query for a few additional steps of expert actions at these states. I design
and evaluate several acquisition functions for measuring the criticality of a state including the variance of a policy
ensemble, influence functions, and a Bayesian objective based on maximizing information gain. The top-K states
with the highest value computed by the acquisition function are chosen to query the human for new action labels.
This approach requires significantly less manual effort and ensures robustness at critical points along the trajectory.
I hypothesize that with only a small amount of new data samples at informative states, we can achieve similar task
performance as collecting full trajectories.

Training generalist agents using Internet-scale videos. When learning a new sport like tennis, we usually
start by watching tutorial videos on YouTube. This process, known as learning from observation [Torabi et al., 2019],
allows us to directly translate from watching videos to the physical motions of swinging a tennis racket even if we
had never used one in the past. Similarly, RL agents could benefit from the vast pool of instructional videos on
media platforms like YouTube to acquire new skills. Recently, Internet scale data have been used to train powerful
models with diverse capabilities in language understanding and visual reasoning. Internet videos are also easily
accessible and provide data across a multitude of tasks and real-world scenes, making them a valuable
data source for training generalist agents. A key challenge in learning from video or observation-only data is
the absence of action and reward labels which are necessary for any RL training. In my recent work, I developed
Prompt-DTLA, a framework for training generalist agents from unlabelled videos [Liang et al., 2024a].
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Figure 5: Prompt-DTLA is a framework for training generalist
agents from videos. We first learn a Latent Action Model to
infer latent actions for a large video corpus. We then train an
in-context transformer policy that generalizes to new unseen
tasks with few-shot examples.

Given a large corpus of Internet videos spanning vari-
ous tasks, the goal is to train an agent that can generalize
to new environments and new tasks with very few expert
demonstrations. To overcome the lack of action labels,
I first trained a Latent Dynamics Model (LAM) follow-
ing [Schmidt and Jiang, 2024, Bruce et al., 2024] to infer
latent actions from observation history (see Figure 5).
Then, using a small set of labelled data from any behav-
ioral policy, I trained an action decoder that maps latent
actions to ground-truth environment actions. Finally, I
trained an autoregressive Transformer-based policy con-
ditioned on few-shot expert prompts and found that it
can in-context generalize to new unseen tasks during in-
ference time. I demonstrated that unsupervised training
of a LAM on the full offline dataset is more data-efficient
than training an inverse dynamics model (IDM) [Baker
et al., 2022] which can only learn from labelled data.
Prompt-DTLA achieves over 40% improvement in suc-
cess rate over the best baseline on challenging general-
ization tasks in XLandMiniGrid [Nikulin et al., 2023].

Currently, I am scaling Prompt-DTLA to more chal-
lenging visual environments like Procgen [Cobbe et al.,
2019], a collection of procedurally generated platformer games. In Procgen, each level corresponds to a different
random seed used to generate the task instance, including the layout, entities and visual aspects and each game also
has different dynamics and objective, making it a nontrivial generalization problem. I am also conducting ablation
studies to understand the effects of different hyperparameters in the LAM (e.g. quantization method) and architecture
choices (e.g. CNN, Transformers, State Space Models). Beyond 2D platformers, I am excited to extend our LAM
to generalize to environments with different action spaces, including continuous actions. A continuous-LAM would
enable scaling Prompt-DTLA to efficiently learn robot policies from human video data.

Humans have a remarkable ability to construct complex models of the world enabling us to predict future events
and plan ahead effectively. In DynaMITE-RL, we construct a world model to quantify uncertainty in the agent’s belief
of the environment and in Prompt-DTLA, we learn a video dynamics model which can be used to predict how a scene
will evolve over time. I am interested in constructing more explicit and accurate world models by incorporating human
priors to bias the model. Humans inherently possess an intuitive understanding of physics including phenomenons
like object permanence, causality, spatial awareness, which are useful priors for building a more realistic world model.

Proposed future direction: Investigate learning a latent action model for continuous action spaces and scale
Prompt-DTLA to enable few-shot generalization for learning robot policies from human videos.
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4 Conclusion

My past work explores how reinforcement learning (RL) agents can achieve more efficient learning and improved
generalization by incorporating various human and learned priors. Specifically, by leveraging task-specific knowledge
and temporal structure, I have shown that RL agents can efficiently learn to solve real-robot manipulation tasks
and incorporate uncertainty to adapt in environments with changing dynamics. Moving forward, I plan to continue
investigating additional forms of human priors and feedback mechanism, developing algorithms that leverage these
modalities to build richer representations and robust RL agents.
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